

Smart Contract Audit

Report

for

R223Token

Version 1.0

Email: bd@trustlook.com

mailto:bd@trustlook.com

@ Copyright 2021 - All rights reserved

Project Overview

Project Name R223Token

Contract codebase N/A

Platform Ethereum

Language Solidity

Submission Time 2021.08.27

Symbol: R223

Name: R223Token

Circulating supply: 7 000 000 000
Total supply: 7 000 000 000
Max supply: 7 000 000 000

Report Overview

Report ID TBL_20210724_00

Version 1.0

Reviewer Blockchain Labs

Starting Time 2021.08.27

Finished Time 2021.08.28

@ Copyright 2021 - All rights reserved

Disclaimer

Audit reports do not provide any warranties or guarantees on the

vulnerability-free nature of the given smart contracts, nor do they

provide any indication of legal compliance. Audit process is aiming to

reduce the high level risks possibly implemented in the smart

contracts before the issuance of audit reports.

Audit reports can be used to improve the code quality of smart

contracts and are not able to detect any security issues of smart

contracts that will occur in the future.

@ Copyright 2021 - All rights reserved

Introduction

By reviewing the implementation of R223Token smart contracts, this audit

report has been prepared to discover potential issues and

vulnerabilities of their source code. We outline in the report about

our approach to evaluate the potential security risks. Advice to

further improve the quality of security or performance is also given

in the report.

About R223Token

R223Token is an ERC-20 type smart contract intended for the creation

and delivery of 7,000,000,000,000 R223 digital assets.

The address of the contract is:

0x428be91cb9a9093dfec1db9e85a6a04ac11dae5e

Upon creation, the contract immediately delivers the tokens to the

creation wallet (R223: Deployer) with address:

0xe0D1EE8081EA438A57e9E1E1Eb0E5B2E7c2eDE2959 according to its

Constructor:

// --

 // Constructor

 // --

 constructor() public {

 symbol = "R223";

 name = "R223Token";

 decimals = 6;

 _totalSupply = 7000000000000000;

 balances[0xe0D1EE8081EA438A57e9E1Eb0E5B2E7c2eDE2959] = _totalSupply;

 emit Transfer(address(0), 0xe0D1EE8081EA438A57e9E1Eb0E5B2E7c2eDE2959, _totalSupply);

 }

@ Copyright 2021 - All rights reserved

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a

checklist of well-known smart contracts related security issues

using automatic verification tools and manual review. To discover

potential logic weaknesses or project specific implementations, we

thoroughly discussed with the team to understand the business model

and reduce the risk of unknown vulnerabilities. For any discovered

issue, we might test it on our private network to reproduce the

issue to prove our findings.

 The checklist of items is shown in the following table:

Category Type ID Name Description

Coding
Specification

CS-01 ERC standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03

Construct
or Mismatch

The constructor syntax is changed with Solidity
versions. Need extra attention to make the
constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and
approve functions should return a bool value, and a
return value code

needs to be added.

CS-05
Address(0
)
validatio
n

It is recommended to add the verification of
require(_to!=address(0)) to effectively avoid
unnecessary loss caused by user misuse or unknown
errors.

CV-06 Unused Variable Unused variables should be removed.

CS-07
Untrusted
Libraries

The contract should avoid using untrusted
libraries, or the libraries need to be
thoroughly audited too.

@ Copyright 2021 - All rights reserved

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using transfer to send funds instead of send.

CS-10 Gas consumption Optimize the code for better gas consumption.

CS-11 Deprecated uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the
system

Coding Security
SE-01 Integer

overflows
Integer overflow or underflow issues.

SE-02 Reentrancy
Avoid using calls to trade in smart contracts to
avoid reentrancy vulnerability.

SE-03 Transactio
n Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge
The judgment of the balance and the transfer amount
needs to use the “require function”.

SE-06 Replay If the contract involves the demands for entrusted
management, attention should be paid to the
nonreusability of verification to avoid replay
attacks.

SE-07

External
call checks

For external contracts, pull instead of push is
preferred.

SE-08 Weak random
The method of generating random numbers on smart
contracts requires more considerations.

Additional
Security

AS-01 Access control Well defined access control for functions.

AS-02

Authenticat
ion management

The authentication management is well defined.

AS-03 Semantic
Consistenc
y

Semantics are consistent.

@ Copyright 2021 - All rights reserved

The severity level of the issues are described in the following table:

Severity Description

Critical The issue will result in asset loss or data
manipulations.

High The issue will seriously affect the
correctness of the business model.

Medium
The issue is still important to fix but not
practical to exploit.

Low
The issue is mostly related to outedate,
unused code snippets.

Informational
This issue is mostly related to code style,
informational statements and is not
mandatory to be fixed.

@ Copyright 2021 - All rights reserved

Audit Results

Here are the audit results of the smart contracts.

Scope

Following files have been scanned by our internal audit tool and manually
reviewed and tested by our team:

File names Compiler Version

R223Token.sol v0.6.6+commit.6c089d02

This audit report is focused on the new update part of the new release.

@ Copyright 2021 - All rights reserved

Summary Details

• ID: TBL_SCA-001

• Severity: Informational

• Type: CS-10 (Gas consumption)

• Description:

The second validation of “amount > 0” is already done at 81. So this
validation can be removed to save gas consumption.

• Remediation:

The dev team has updated the contract in the updated version with SHA1 value

“2a2ec36ced889e44c11ca25bf2537dc1a6d92632”

@ Copyright 2021 - All rights reserved

• ID: TBL_SCA-002

• Severity: Informational

• Type: CS-12 (Sanity Checks)

• Description:

For key parameters in the system, it is recommended to add some sanity
checks on update.

It is recommended to validate the parameter to be a non-zero value
before the assignment.

• Remediation:

The dev team has updated the contract in the updated version with SHA1 value

“2a2ec36ced889e44c11ca25bf2537dc1a6d92632”

@ Copyright 2021 - All rights reserved

• ID: TBL_SCA-003

• Severity: Informational

• Type: CS-08 (Event Standard)

• Description:

When defining an Event with address parameters, it is recommended to
add “indexed” keyword for them for better query operations.

We advise to update these Events as follows:

event Deposit(address indexed sender, address indexed asset, uint amount);

event Withdraw(address indexed sender, address indexed asset, uint amount);

event ReduceUnlockedAmount(address indexed depositor, address indexed asset,

uint unlockedAmount);

• Remediation:

The dev team has updated the contract in the updated version with SHA1 value

“2a2ec36ced889e44c11ca25bf2537dc1a6d92632

 @ Copyright 2021 - All rights reserved

Auditor Comments

The audited smart contract can be deployed. Only low severity issues were found

during the audit.

Conclusion

The audited smart contract can be deployed. Only low severity issues were found

during the audit.

Blockchain Labs

